spiketools.spatial.occupancy.compute_bin_counts_pos¶
- spiketools.spatial.occupancy.compute_bin_counts_pos(position, bins, area_range=None, occupancy=None, orientation=None)[source]¶
Compute counts per bin, from position data.
- Parameters:
- position1d or 2d array
Position values.
- binsint or list of [int, int]
The bin definition for dividing up the space. If 1d, can be integer. If 2d should be a list, defined as [number of x_bins, number of y_bins].
- area_rangelist of list, optional
Edges of the area to bin, defined as [[x_min, x_max], [y_min, y_max]]. Any values outside this range will be considered outliers, and not used to compute edges.
- occupancy1d or 2d array, optional
Occupancy across the spatial bins. If provided, used to normalize bin counts.
- orientation{‘row’, ‘column’}, optional
The orientation of the position data. If not provided, is inferred from the position data.
- Returns:
- bin_counts1d or 2d array
Amount of events in each bin. For 2d, has shape [n_y_bins, n_x_bins] (see notes).
Notes
For the 2d case, note that while the inputs to this function list the x-axis first, the output of this function, being a 2d array, follows the numpy convention in which columns (y-axis) are on the 0th dimension, and rows (x-axis) are on the 1th dimension.
Examples
Compute counts across 2d bins from position data:
>>> position = np.array([[0.5, 1.0, 1.5, 2.0, 3.0], ... [0.1, 0.2, 0.3, 0.4, 0.5]]) >>> bins = [2, 3] >>> compute_bin_counts_pos(position, bins) array([[2, 0], [1, 0], [0, 2]])